Every non-Euclidean oriented matroid admits a biquadratic final polynomial

نویسندگان

  • Komei Fukuda
  • Sonoko Moriyama
  • Hiroki Nakayama
  • Jürgen Richter-Gebert
چکیده

Richter-Gebert proved that every non-Euclidean uniform oriented matroid admits a biquadratic final polynomial. We extend this result to the non-uniform case.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Euclideaness and Final Polynomials in Oriented Matroid Theory

This paper deals with a geometric construction of algebraic non-realizability proofs for certain oriented matroids. As main result we obtain an algorithm which generates a (bi-quadratic) final polynomial [3], [5] for any non-euclidean oriented matroid. Here we apply the results of Edmonds, Fukuda and Mandel [6], [7] concerning non-degenerate cycling of linear programms in non-euclidean oriented...

متن کامل

Oriented matroids and Ky Fan's theorem

L. Lovász has shown in [9] that Sperner’s combinatorial lemma admits a generalization involving a matroid defined on the set of vertices of the associated triangulation. We prove that Ky Fan’s theorem admits an oriented matroid generalization of similar nature (Theorem 3.1). Classical Ky Fan’s theorem is obtained as a corollary if the underlying oriented matroid is chosen to be the alternating ...

متن کامل

Realizable but not Strongly Euclidean Oriented Matroids

The extension space conjecture of oriented matroid theory claims that the space of all (non-zero, non-trivial, single-element) extensions of a re-alizable oriented matroid of rank r is homotopy equivalent to an (r ? 1)-sphere. In 1993, Sturmfels and Ziegler proved the conjecture for the class of strongly Euclidean oriented matroids, which includes those of rank at most 3 or corank at most 2. Th...

متن کامل

Circuit Admissible Triangulations of Oriented Matroids Jörg Rambau

All triangulations of euclidean oriented matroids are of the same PLhomeomorphism type by a result of Anderson. That means all triangulations of euclidean acyclic oriented matroids are PL-homeomorphic to PL-balls and that all triangulations of totally cyclic oriented matroids are PL-homeomorphic to PLspheres. For non-euclidean oriented matroids this question is wide open. One key point in the p...

متن کامل

Circuit Admissible Triangulations of Oriented Matroids

All triangulations of euclidean oriented matroids are of the same PLhomeomorphism type by a result of Anderson. That means all triangulations of euclidean acyclic oriented matroids are PL-homeomorphic to PL-balls and that all triangulations of totally cyclic oriented matroids are PL-homeomorphic to PLspheres. For non-euclidean oriented matroids this question is wide open. One key point in the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Combinatorica

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2009